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Abstract

Chronic exposure to stress has been widely implicated in the development of anxiety disorders, yet relatively little is known
about the long-term effects of chronic stress on amygdala-dependent memory formation. Here, we examined the effects of
a history of chronic exposure to the stress-associated adrenal steroid corticosterone (CORT) on the consolidation of a fear
memory and the expression of memory-related immediate early genes (IEGs) in the lateral nucleus of the amygdala (LA).
Rats received chronic exposure to CORT (50 mg/ml) in their drinking water for 2 weeks and were then titrated off the CORT
for an additional 6 days followed by a 2 week ‘wash-out’ period consisting of access to plain water. Rats were then either
sacrificed to examine the expression of memory-related IEG expression in the LA or given auditory Pavlovian fear
conditioning. We show that chronic exposure to CORT leads to a persistent elevation in the expression of the IEGs Arc/
Arg3.1 and Egr-1 in the LA. Further, we show that rats with a history of chronic CORT exposure exhibit enhanced
consolidation of a fear memory; short-term memory (STM) is not affected, while long-term memory (LTM) is significantly
enhanced. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine following the chronic CORT exposure
period was observed to effectively reverse both the persistent CORT-related increases in memory-related IEG expression in
the LA and the CORT-related enhancement in fear memory consolidation. Our findings suggest that chronic exposure to
CORT can regulate memory-related IEG expression and fear memory consolidation processes in the LA in a long-lasting
manner and that treatment with fluoxetine can reverse these effects.
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Introduction

Stress has been strongly implicated in the development of

numerous psychiatric disorders, including post-traumatic stress

disorder (PTSD), an anxiety disorder characterized by intense

fearful memory formation to cues associated with a traumatic

event [1-4]. It is well established that the lateral nucleus of the

amygdala (LA) is a critical region for the formation and storage of

Pavlovian fear memories [5]. It is also known that the LA contains

a rich supply of glucocorticoid receptors which bind glucocorti-

coids released in response to stressful stimuli [6,7], rendering this

brain region a prime target for the site of action of stress-induced

modulation of fear memories [8].

Prolonged periods of stress or chronic exposure to glucocorti-

coids, including the adrenal steroid corticosterone (CORT), have

been observed to promote multiple morphological and molecular

alterations in brain regions associated with cognition and emotion.

In rodent models, for example, prolonged exposure to stress or

oral CORT has been shown to promote dendritic atrophy in the

hippocampus, particularly in area CA3 [9–13], impair hippocam-

pal neurogenesis [14–16], and significantly decrease the expression

of several plasticity-related signaling proteins and genes in the

hippocampus, including the activity of the extracellular signal-

regulated kinase (ERK) and the cAMP-response element binding

protein (CREB) and the expression of brain derived neurotrophic

factor (BDNF) [17–21]. At a functional level, prolonged exposure

to stress or oral CORT in rats has been shown to impair

hippocampal synaptic plasticity [22,23] and hippocampal-depen-

dent memory formation [11,23–26].

A remarkably different picture has emerged in the amygdala

following prolonged exposure to chronic stress. In contrast to the

hippocampus, exposure to chronic stress has been observed to
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promote dendritic hypertrophy in LA neurons [13,27], increase

dendritic spine density [28,29] and to significantly increase the

expression of BDNF [21]. These observations are consistent with

the findings that a bout of chronic stress exposure can promote

anxiety-like behavior in rats [27,30] and enhance the formation of

a Pavlovian fear memory when rats are trained and tested shortly

after the stress exposure period [31,32]. Further, one of the more

notable, and perhaps clinically consequential, aspects of the effects

of chronic stress on the amygdala is the persistence of its

morphological and behavioral effects [8]. It is well established

that the morphological and behavioral effects of chronic stress are

reversible in the hippocampus following a period of recovery

[21,26,27,31]. In contrast, chronic stress has been shown to lead to

persistent dendritic hypertrophy in LA neurons, a persistent

increase in the expression of BDNF mRNA in the LA and

persistent changes in anxiety-like behavior in rats that does not

recover with time [21,27].

Given the persistence of the effects of stress in the amygdala, it is

surprising that few studies have systematically examined the long-

term effects of chronic stress on amygdala-dependent memory

formation. To that end, in the present study we examined the

long-term effects of chronic exposure to oral CORT on the

expression on plasticity-related signaling pathways and memory-

related IEGs in the LA and on the consolidation of a Pavlovian

fear memory. We show that chronic oral CORT exposure

persistently elevates the expression of memory-related IEGs in

the LA and enhances the consolidation of an auditory fear

memory. Further, we show that each of these effects can be

reversed following treatment with the selective serotonin-reuptake

inhibitor (SSRI) fluoxetine. Collectively, our findings suggest that

chronic stress, as modeled by a chronic oral CORT paradigm,

leads to long-lasting alterations in amygdala-dependent learning

and memory processes via alterations in memory-related genes in

LA neurons, findings which may have relevance for understanding

the neurobiological mechanisms underlying the development of

psychiatric disorders such as PTSD that are characterized by

unusually strong and persistent fear memories.

Materials and Methods

Subjects
Adult male Sprague-Dawley rats (Harlan), obtained at ,3

months of age, were housed individually in plastic cages and

maintained on a 12:12 hr light/dark cycle. Food and water were

provided ad libitum throughout the experiments. All procedures

were conducted under the guidelines provided in the National

Institutes of Health Guide for the Care and Use of Experimental Rats and

were approved by the Yale University Institutional Animal Care

and Use Committee.

Corticosterone exposure
A low-dose chronic oral CORT paradigm designed to mimic

the effects of chronic mild stress was adapted from previous studies

[17,18,20,44]. Briefly, corticosterone (4-Pregnen-11b, 21-Diol-3,

20-Dione 21-Hemisuccinate; Steraloids, Inc) solution was made by

dissolving it in tap water, bringing the pH to 12 and stirring for

1 hr. After CORT was in solution, the pH was brought down to

7.0–7.4 using HCl. The CORT solution was made fresh every

72 hours and bottles were weighed daily to measure rats’ fluid

consumption. For experiments examining the acute effects of

chronic CORT exposure, rats received either water alone or

CORT in their drinking water at a concentration of 50 mg/ml for

2 weeks followed by sacrifice. For experiments examining the long-

lasting effects of chronic CORT exposure, rats received CORT in

their drinking water at a concentration of 50 mg/ml for 2 weeks,

followed by 6 days of CORT titration in which the concentration

was reduced to 25 mg/ml for 3 days and then 12.5 mg/ml for an

additional 3 days. Rats then received a ‘wash-out’ period during

which they received access to regular water for 2 weeks. This low-

dose chronic 14 d CORT exposure protocol has been shown to

reliably increase serum CORT levels and to induce in rodent

models a long-lasting phenotype of anhedonia, helplessness-like

behavior and morphological changes in the hippocampus and

prefrontal cortex similar to what has been observed with chronic

behavioral stressors [17,18,20,44,62]. Importantly, it is the chronic

nature of the model that appears to be critical; exposure to this

low-dose oral CORT paradigm for 1 d has not been observed to

promote molecular changes in the brain [19]. Further, unlike

protocols that use higher doses of CORT [32], this protocol has

been shown to be without significant effects on body weight during

the CORT exposure period [18]. Levels of serum CORT have

been observed to rapidly return to baseline following the CORT

exposure period using this protocol [17,18], and no long-term

changes in either body or adrenal weights have been observed

[18]. In our experiments, total fluid intake during the CORT

exposure averaged ,35–40 ml/day (,1.75–2.0 mg CORT/day/

rat), and was not observed to differ significantly between groups

(water vs. CORT; p . 0.05; Figure S1a).

Fluoxetine exposure
For the fluoxetine (FLX) treatment experiments, rats received

exposure to 2 weeks of chronic oral CORT (50 mg/ml) followed by

6 days of CORT titration (25 mg/ml for 3 days; 12.5 mg/ml for 3

days) as described above. Following CORT titration, rats received

a 3 week ‘wash-out’ period during which they were exposed to

either regular water with 2% saccharin or fluoxetine in their

drinking water (333 ml/ml). Fluoxetine hydrochloride (Matrix

Scientific) was dissolved in tap water with 2% saccharin to mask

the taste. Fluoxetine was made fresh weekly. Total fluid intake

during the FLX exposure period averaged ,30 ml/day (,9.9 mg

FLX/day/rat) and did not differ between groups (p . 0.05; Figure

S1b).

Western blotting experiments
To examine the expression of CORT-regulated proteins in the

LA, rats were sacrificed either at the end of the 2 week exposure to

50 mg/ml CORT, the end of the 2 week water ‘wash-out’ period,

or at the end of the 3 week period of treatment with fluoxetine.

Rats were sedated using isoflurane and decapitated. Brains were

frozen and stored at 280uC until processed. For Western blotting,

punches were taken from the LA using a 1 mm punch tool (Fine

Science Tools, Foster City, CA) from 400-mm-thick sections cut on

a sliding freezing microtome. Punches were manually dounced in

100 ml of ice-cold hypotonic lysis buffer [10 mM Tris-HCl,

pH 7.5, 1 mM EDTA, 2.5 mM sodium pyrophosphate, 1 mM

phenylmethylsulfonyl fluoride, 1 mM b-glycerophosphate, 1%

Igepal CA-630, 1% protease inhibitor cocktail (Sigma) and 1 mM

sodium orthovanadate]. Sample buffer was immediately added to

the homogenates, and the samples were boiled for 4 min.

Homogenates were electrophoresed on 4–20% gels and blotted

to Immobilon-P (Millipore, Bedford, MA). Western blots were

blocked in 5% milk in TTBS buffer (50 mM Tris-HCl, pH 7.5,

150 mM NaCl, and 0.05% Tween 20) then incubated with anti-

phospho ERK (1:1K; Cell Signaling), anti-total ERK (1:1K; Cell

Signaling), anti-acetyl histone H3 (1:3K; Millipore), anti-total

histone H3 (1:5K; Millipore), anti-Arc/Arg3.1 (1:1K; Santa Cruz),

anti-Egr-1 (1:1K; Santa Cruz), anti-BDNF (1:600; Millipore), anti-

synaptophysin (1:5K; Dako), or anti-GluR1 (1:1K; Abcam)
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antibody. Blots were then incubated with anti-rabbit or anti-mouse

conjugated to horseradish peroxidase (1:20K; Cell Signaling) and

developed using West Dura chemiluminescent substrate (Pierce).

GAPDH (1:5K; Abcam) was used as a loading control for all

Western blotting experiments. Optical densities of the bands were

analyzed using NIH Image software. For analysis of ERK and

histone H3 proteins, optical densities for total ERK or total H3

were first normalized to GAPDH. Phospho-ERK or acetyl-H3 was

then normalized to total ERK or total H3 for each sample and

expressed as a percentage of that in the water alone control group.

Optical densities for all other proteins were normalized to

GAPDH and expressed as a percentage of the water alone control

group.

Elevated plus maze
Prior to fear conditioning, rats were tested in the elevated plus

maze (EPM) to assess the effect of a history of chronic CORT

exposure and the effects of subsequent FLX treatment on

unlearned fear/anxiety-like responses. The EPM was performed

essentially as previously described [63]. Briefly, each rat was

placed at the center of the maze, and its behavior was recorded

onto videotape for a period of 10 min. The total time each rat

spent in the open arms and the numbers of entries into either the

open or closed arms was recorded across the 10 min period by an

observer blind to experimental conditions. The task was carried

out in a small, dimly lit room (100LUX).

Fear conditioning
Rats were habituated to handling and to the conditioning

chambers for 2 days prior to training. On the training day, rats

were fear conditioned with 2 tone-shock pairings consisting of a 20

sec, 5 kHz, 75 dB tone that co-terminated with a 1 sec, 0.25 mA

foot shock (ITI = 120 sec). Testing for short-term memory (STM)

and long-term memory (LTM) occurred at 2 and 24 hrs following

training, respectively. For each test, rats were placed in a distinct

environment that was dark and consisted of a flat black plastic

floor that had been washed with a peppermint-scented soap. The

STM test consisted of presentation of 3 conditioned stimulus (CS)

tones to minimize extinction. The LTM test consisted of exposure

to 10 CS tones. Freezing behavior, defined as a lack of all

movement with the exception of that required for respiration, was

recorded onto video tape during all testing sessions and scored by

hand by an experimenter who was blind to the experimental

conditions. Freezing to each 20 sec tone was expressed as a

percentage of the total CS presentation time and data were

analyzed with repeated-measures ANOVA. Differences were

considered significant if p , 0.05.

Results

Chronic exposure to CORT enhances the expression of
intracellular signaling pathways, memory-related IEGs
and synaptically-localized proteins in the lateral
amygdala

As an initial step toward asking whether chronic exposure to

CORT might promote alterations in the expression of plasticity-

related proteins the LA that, in turn, regulate the consolidation of

a fear memory, we first examined the expression of memory-

related and synaptically-localized proteins in the LA following 2

weeks of chronic oral CORT exposure. Previous work from our

lab and others has shown that the consolidation of a Pavlovian fear

memory requires phosphorylation of the extracellular signal-

regulated kinase (ERK), the acetylation of histone H3, and the

expression of the immediate-early genes (IEGs) activity-regulated

cytoskeletal-associated protein (Arc/Arg3.1), early growth re-

sponse protein 1 (Egr-1) and BDNF in the LA [33–42]. In this

first experiment, we examined the expression of each of these

memory-related proteins in the LA on the final day of a 2-week

chronic exposure to CORT (Figure 1a). We also examined the

expression of the synaptically-localized proteins GluR1 and

synaptophysin as an assay for whether chronic exposure to CORT

may promote morphological (e.g. spine) changes in the LA that

have previously been observed following exposure to a chronic

behavioral stressor [13,28,29]. For a comparison with previous

work that has documented stress- and CORT-related changes in

neuronal morphology and BDNF expression in the hippocampus

[9–13,21], we also examined the expression of GluR1, synapto-

physin and BDNF in samples from hippocampal area CA3 in the

same animals.

Rats received either plain water or CORT (50 mg/ml) in their

drinking water for 14 consecutive days and were sacrificed on the

last day of CORT exposure (Figure 1a). Western blot analysis from

punches taken from hippocampal area CA3 revealed that a 2 week

exposure to CORT resulted in a significant downregulation of

GluR1 [t(16) = 3.47, p , 0.01], synaptophysin [t(16) = 2.95, p ,

0.01], and BDNF [t(16) = 2.52, p , 0.05] proteins (Figure 1b). In

contrast, and consistent with previous reports of increased

dendritic length and branch points and spine number in LA

neurons following a chronic behavioral stressor [13,28,29], we

observed a significant upregulation in synaptophysin [t(16) = 2.63,

p , 0.05] and GluR1 [t(16) = 2.66, p , 0.05] protein expression in

the LA (Figure 1c). Further, Western blot analysis revealed that

chronic CORT exposure resulted in a significant upregulation of

phospho-ERK1 [t(15) = 2.74, p , 0.05], phospho-ERK2 [t(15) =

3.48, p , 0.01], acetylated histone H3 [t(14) = 3.52, p , 0.05],

Arc/Arg3.1 [t(16) = 2.15, p , 0.05], Egr-1 [t(16) = 2.23, p , 0.05]

and BDNF [t(16) = 2.27, p , 0.05] protein expression in the LA

(Figure 1c). We observed no significant differences in the

expression of total-ERK or total-H3 protein (ERK1: t(15) =

0.40, p . 0.05; ERK2: t(15) = 0.42, p . 0.05; H3: t(14) = 0.78, p

. 0.05) or in the loading control GAPDH between groups in any

of our assays.

Chronic exposure to CORT persistently enhances the
expression of memory-related IEGs and synaptically-
localized proteins in the lateral amygdala

In our next series of experiments, we examined the persistence

of the CORT-related alterations in the expression of synaptically-

localized and memory-related proteins in hippocampal area CA3

and the LA. Rats received chronic exposure to either plain water

or CORT (50 mg/ml) in their drinking water for 14 days, followed

by an additional 6 days of CORT titration (25 mg/ml for 3 days,

12.5 mg/ml for 3 days). Rats then received a ‘wash-out’ period

consisting of exposure to regular water for an additional 2 weeks

prior to sacrifice (Figure 1a).

Consistent with previous findings showing a reversal in stress-

related morphological changes and in the expression of BDNF

mRNA in area CA3 following a recovery period [21,26,27,31], we

observed no significant changes in either GluR1 [t(16) = 0.42, p .

0.05], synaptophysin [t(16) = 0.10, p . 0.05], or BDNF [t(16) =

0.60, p . 0.05] proteins in area CA3 in rats with a history of

chronic CORT exposure (Figure 1e). In contrast, and consistent

with previous findings showing a persistent enhancement in

dendritic length and branch points in the LA following exposure to

a chronic behavioral stressor [27], we observed that rats with a

history of chronic CORT exposure exhibited enhanced expression

of both GluR1 [t(15) = 2.05, p = 0.05] and synaptophysin [t(16) =

Chronic Corticosterone Exposure & Fear Memory
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2.24, p , 0.05] in the LA (Figure 1f). Remarkably, we also

observed a persistent increase in the expression of the IEGs Arc/

Arg3.1 [t(15) = 2.20, p , 0.05] and Egr-1 [t(15) = 2.29, p , 0.05]

that was not associated with persistently elevated levels of

phospho-ERK1 [t15) = 0.11, p . 0.05], phospho-ERK2 [t(15)

= 0.21, p . 0.05] or acetyl-H3 [t(15) = 0.39, p . 0.05] protein

expression in the LA (Figure 1f). In contrast to Arc/Arg3.1 and

Egr-1, we observed no persistent increase in the expression of

BDNF protein in the LA (t(16) = 0.71, p . 0.05; Figure 1f). Levels

of total ERK [ERK1: t(15) = 0.10, p . 0.05; ERK2: t(15) = 0.79, p

. 0.05]; total-H3 [t(15) = 0.05, p . 0.05] or the loading control

GAPDH did not differ between groups in any of the experiments.

Collectively, our findings are consistent with those of previous

reports of long-lasting dendritic hypertrophy in the LA following

chronic behavioral stress [13,27]. Further, given that these

experiments were performed two weeks following the last exposure

to CORT, our findings suggest that a history of chronic exposure

to CORT can regulate memory-related IEG expression in the LA

in a long-lasting manner.

Rats with a history of chronic CORT exposure exhibit
enhanced consolidation of a Pavlovian fear memory

In the preceding experiments, we showed that chronic exposure

to CORT elevates the expression of the memory-related IEGs

Arc/Arg3.1 and Egr-1 in the LA, and that the expression of these

proteins remains elevated in a persistent manner long after the

exposure to CORT has ended. Given that both Arc/Arg3.1 and

Egr-1 have been implicated in fear memory consolidation

processes in the LA [33,36], in our next set of experiments we

asked whether a history of chronic exposure to CORT can

enhance the consolidation of a Pavlovian fear memory. Previous

studies using both behavioral stressors and chronic exposure to

oral CORT have observed enhancements in auditory and

contextual fear memory shortly after the stress/CORT exposure

period [31,32], but see [43], findings that are consistent with our

observations that a period of chronic CORT exposure can elevate

the expression of plasticity-related signaling pathways in the LA.

To date, however, few studies have examined whether a history of

chronic stress or oral CORT exposure can modify the acquisition

or consolidation of an amygdala-dependent fear memory.

Figure 1. Chronic exposure to CORT persistently enhances the expression of memory-related IEGs and synaptically-localized
proteins in the LA. (A) Schematic of the behavioral protocol. Rats received either Water or CORT in their drinking water (50 mg/ml) for 2 weeks. Half
the rats were sacrificed at the end of CORT exposure period. The other half was titrated off the CORT (25 mg/ml, 12.5 mg/ml) and given a 2 week
period of exposure to water alone (‘wash-out’) prior to being sacrificed. (B) Mean (6SEM) immunoreactivity for GluR1, synaptophysin and BDNF
(Water: n = 9; CORT: n = 9) from area CA3 in rats sacrificed on the last day of CORT exposure. (C) Mean (6SEM) immunoreactivity for GluR1 (Water:
n = 9; CORT: n = 9), synaptophysin (Water: n = 9; CORT: n = 9), Arc/Arg3.1 (Water: n = 9; CORT: n = 9), Egr-1 (Water: n = 9; CORT: n = 9), BDNF (Water:
n = 9; CORT: n = 9), acetyl-H3 (Water: n = 7; CORT: n = 9), phospho-ERK 1 and phospho-ERK 2 (Water: n = 8; CORT: n = 9) from the LA in rats sacrificed on
the last day of CORT exposure. (D) Representative Western blots for each protein in (C). (E) Mean (6SEM) immunoreactivity for GluR1, synaptophysin,
and BDNF (Water: n = 9; CORT: n = 9) from area CA3 in rats sacrificed on the last day of the wash-out period. (F) Mean (6SEM) immunoreactivity for
GluR1 (Water: n = 9; CORT: n = 8), synaptophysin (Water: n = 9; CORT: n = 9), Arc/Arg3.1 (Water: n = 9; CORT: n = 8), Egr-1 (Water: n = 9; CORT: n = 8),
BDNF (Water: n = 9; CORT: n = 9), acetyl-H3 (Water: n = 9; CORT: n = 8), phospho-ERK 1 and phospho-ERK 2 (Water: n = 9; CORT: n = 8) from the LA in
rats sacrificed on the last day of the wash-out period. (G) Representative Western blots for each protein in (F). For each experiment, protein levels
have been normalized to GAPDH levels for each sample and expressed as a percentage of the Water group. (*) p , 0.05 relative to Water group.
doi:10.1371/journal.pone.0091530.g001
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In our experiments, rats received exposure to either plain

water or CORT (50 mg/ml) in their drinking water for 2

weeks, followed by an additional 6 days of CORT titration

(25 mg/ml for 3 days, 12.5 mg/ml for 3 days) as before. Rats

then received a ‘wash-out’ period for an additional 2 weeks

consisting of exposure to regular water. Following the wash-out

period, all rats were tested in the elevated plus maze (EPM) to

assay the effects of a history of chronic CORT exposure on

unlearned fear/anxiety-like behavior. Following the EPM test,

rats were habituated to the fear conditioning chamber for 2

days followed by fear conditioning consisting of 2 tone-shock

pairings. Short-term and long-term memory tests were

performed 2 and 24 hrs later, respectively, in a distinct context

(Figure 2a).

Consistent with previous reports [18,44], we observed no

significant effects of prior chronic exposure to CORT in the

EPM (Figure 2b). No statistically significant differences were

observed in the total time spent in either the open [t(14) = 1.56,

p . 0.05] or closed [t(14) = 0.26, p . 0.05] arms of the maze

(Figure 2b). Further, we observed no significant differences in

the total number of entries into the open [t(14) = 1.45, p . 0.05]

or closed [t(14) = 1.46, p . 0.05] arms of the maze (data not

shown).

In our fear conditioning experiments, we observed no differ-

ences in post-shock freezing (PSF) during training (Figure 2c). The

ANOVA for PSF scores revealed nonsignificant effects for group

[F(1,14) = 0.07, p . 0.05] and the group by trial interaction [F(2,28)

= 0.70, p . 0.05], but a significant effect for trial [F(2,28) = 45.03,

p , 0.001]. Further, water and CORT-treated rats exhibited

comparable levels of freezing during the STM test (Figure 2d). The

ANOVA for STM scores revealed nonsignificant effects for group

[F(1,14) = 0.27, p . 0.05], trial [F(2,28) = 2.04, p . 0.05], and the

group by trial interaction [F(2,28) = 0.20, p . 0.05]. Therefore, a

history of chronic CORT exposure does not interfere with shock

sensitivity (as assayed by PSF) or the acquisition or short-term

storage of an auditory fear memory. During the LTM test,

however, rats with a history of chronic CORT exposure exhibited

a significantly higher level of fear memory retention relative to

water controls (Figure 2e). The ANOVA for LTM scores revealed

significant effects for group [F(1,14) = 31.65 p , 0.001] and trial

[F(9,126) = 5.66, p , 0.001], and a nonsignificant group by trial

interaction [F(9,126) = 0.65, p . 0.05].

Collectively, our findings suggest that a prior history of chronic

oral CORT exposure is able to enhance not only the expression of

memory-related IEGs in the LA in a persistent manner, but also

the consolidation of an auditory Pavlovian fear memory; that is,

LTM is enhanced, while STM is unaffected.

Figure 2. A history of chronic CORT exposure enhances the consolidation of a Pavlovian fear memory. (A) Schematic of the behavioral
protocol. Rats received either Water (n = 7) or CORT (n = 9; 50 mg/ml) for 2 weeks followed by CORT titration (25 mg/ml, 12.5 mg/ml) and a 2 week
water ‘wash-out’ period. At the end of the wash-out period, rats were tested in the elevated plus maze (EPM). Rats were then fear conditioned with 2
tone-shock pairings and tested for STM (2 hr later) and LTM (24 hr later). (B) Mean (6SEM) time spent exploring the open and closed arms of the EPM
in each group. (C) Mean (6SEM) post-shock freezing scores in each group following each conditioning trial. (D) Mean (6SEM) STM scores across each
trial in each group. (E) Mean (6SEM) LTM scores across each trial in each group.
doi:10.1371/journal.pone.0091530.g002
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Fluoxetine treatment following chronic CORT exposure
reverses the persistent enhancement in memory-related
IEG expression in the LA

Previous work has shown that treatment with the SSRI

fluoxetine following a period of chronic oral CORT exposure

can normalize CORT-related molecular changes in the hippo-

campus [18]. In our next series of experiments, we asked whether

treatment with fluoxetine can reverse the effects of a history of

chronic CORT on the persistent expression of memory-related

IEGs and synaptically-localized proteins in the LA. Rats received

either plain water or chronic exposure to CORT (50 mg/ml) in

their drinking water for 2 weeks followed by 6 days of CORT

titration (25 mg/ml for 3 days, 12.5 mg/ml for 3 days) as before.

Following CORT titration, each group was divided into two

additional groups that received either plain water or fluoxetine

(FLX; 333 mg/ml) in their drinking water for an additional 3

weeks resulting in the following 4 groups: Water/Water, Water/

FLX, CORT/Water, CORT/FLX. On the last day of water or

fluoxetine treatment, rats were sacrificed and brains were

processed for protein analysis (Figure 3a).

Consistent with our previous findings, Western blot analysis

revealed that a prior chronic exposure to CORT led to significant

elevations in the expression of Arc/Arg3.1, Egr-1, GluR1 and

synaptophysin in the LA (Water/Water vs. CORT/water groups;

Figure 3b). Remarkably, a 3 week treatment with FLX was

observed to reverse the effects of CORT on memory-related IEG

expression in the LA (CORT/Water vs. CORT/FLX groups;

Figure 3b). The ANOVAs for the IEGs revealed a significant effect

for group [Arc/Arg3.1: F(3,27) = 3.11, p , 0.05; Egr-1: F(3,28) =

4.97, p , 0.01], with the CORT/Water groups differing

significantly from Water/Water, Water/FLX, and CORT/FLX

groups (p , 0.05; Duncan’s test). Treatment with FLX alone

(Water/Water vs. Water/FLX) was observed to have no effect on

IEG expression in the LA (p . 0.05).

Interestingly, treatment with FLX was observed to have no

effect on the persistent enhancement of either GluR1 or

synaptophysin the LA (Figure 3c). The ANOVAs for the

synaptically-localized proteins revealed a significant effect for

group [GluR1: F(3,28) = 3.61, p , 0.05; synaptophysin: F(3,28) =

3.88, p , 0.05]. Duncan’s post-hoc t-tests revealed significant

differences between the CORT/Water and CORT/FLX groups

relative to the Water/Water and Water/FLX groups (p , 0.05),

while treatment with FLX alone (Water/Water vs. Water/FLX)

was found to have no effect (p . 0.05). No significant difference

between the CORT/Water and CORT/FLX groups was

observed (p . 0.05).

Collectively, our findings indicate that chronic treatment with

the SSRI fluoxetine following a period of chronic CORT exposure

can effectively reverse the persistent CORT-induced changes in

memory-related IEG expression in the LA.

Figure 3. Fluoxetine treatment following chronic CORT exposure reverses the persistent enhancement in memory-related IEG
expression in the LA. (A) Schematic of the behavioral protocol. Rats received either Water or CORT (50 mg/ml) for 2 weeks followed by CORT
titration (25 mg/ml, 12.5 mg/ml). Rats then received 3 weeks of either Water or fluoxetine (FLX; 333 mg/ml) and were then sacrificed. (B) Mean (6SEM)
immunoreactivity for Arc/Arg3.1 (Water/Water: n = 8; Water/Flx: n = 8; CORT/Water: n = 8; CORT/Flx: n = 7) and Egr-1 (Water/Water: n = 8; Water/Flx:
n = 8; CORT/Water: n = 8; CORT/Flx: n = 8) in the LA for each group. (C) Mean (6SEM) immunoreactivity for GluR1 and synaptophysin (Water/Water:
n = 8; Water/Flx: n = 8; CORT/Water: n = 8; CORT/Flx: n = 8) in the LA for each group. Representative Western blots for all proteins are shown in the
inset. For each experiment, protein levels have been normalized to GAPDH levels for each sample and expressed as a percentage of the Water/Water
group. (*) p , 0.05 relative to Water/Water group.
doi:10.1371/journal.pone.0091530.g003
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Fluoxetine treatment following chronic CORT exposure
reverses the CORT-induced enhancement of fear
memory consolidation

In our final experiment, we asked whether fluoxetine treatment

following a history of chronic oral CORT exposure is capable of

reversing the CORT-related enhancement in fear memory

consolidation. Rats received either plain water or chronic exposure

to CORT (50 mg/ml) in their drinking water for 2 weeks followed

by CORT titration (25 mg/ml for 3 days, 12.5 mg/ml for 3 days)

and an additional 3 weeks of treatment with either water or

fluoxetine (333 mg/ml) as above. Following the FLX treatment

period, rats in each of the 4 groups were tested in the EPM to

assay the effects of CORT and FLX on unlearned fear/anxiety-

like responses. Rats were then habituated to the conditioning

chamber for 2 days prior to fear conditioning consisting of 2 tone-

shock pairings and tested for both STM (at 2 hr) and LTM (at

24 hr) in a distinct context as before (Figure 4a). All rats remained

on their respective treatment (water or FLX) throughout the

duration of the behavioral experiments.

Similar to our findings above, we observed no significant effects

of a prior chronic exposure to CORT in the EPM. We also

observed that treatment with this dose of FLX alone had no

significant effect on rats’ performance in the EPM (Figure 4b). No

statistically significant differences between groups were observed in

the total time spent in either the open [F(3,22) = 2.02, p . 0.05] or

closed [F(3,22) = 2.06, p . 0.05] arms of the maze (Figure 4b).

Further, we observed no significant differences in the total number

of entries into the open [F(3,22) = 2.15, p . 0.05] or closed [F(3,22)

= 1.49, p . 0.05] arms of the maze (data not shown).

In our fear conditioning experiments, we observed no differ-

ences in post-shock freezing during training among the 4 groups

(Figure 4c). The ANOVA for PSF scores revealed a significant

effect for trial [F(2,46) = 214.09, p , 0.001], but nonsignificant

effects for group [F(3,23) = 0.09, p . 0.05] and the group by trial

interaction [F(6,46) = 0.08, p . 0.05]. Further, each of the 4

groups exhibited comparable levels of freezing during the STM

test (Figure 4d). The ANOVA for STM scores revealed

nonsignificant effects for group [F(3,23) = 0.54, p . 0.05], trial

[F(2,46) = 2.86, p . 0.05], and the group by trial interaction

[F(6,46) = 0.40, p . 0.05]. During the LTM test, however, the

CORT/Water group demonstrated significantly higher levels of

fear memory retention relative to all other groups (p , 0.05;

Duncan’s test; Figure 4e). The ANOVA for LTM scores revealed

significant effects for group [F(3,23) = 7.63, p , 0.01] and trial

[F(9,207) = 2.50, p , 0.001], but a nonsignificant group by trial

interaction [F(27,207) = 0.21, p . 0.05]. Importantly, there was no

effect of this dose of FLX alone on the expression of fear memory

in the Water/FLX group (p . 0.05).

Collectively, these findings indicate that treatment with the

SSRI fluoxetine following a period of chronic oral CORT

exposure can reverse not only the persistent elevation in

Figure 4. Fluoxetine treatment following chronic CORT exposure reverses the CORT-induced enhancement of fear memory
consolidation. (A) Schematic of the behavioral protocol. Rats received either Water (n = 7) or CORT (n = 7; 50 mg/ml) for 2 weeks followed by CORT
titration (25 mg/ml, 12.5 mg/ml). Rats then received 3 weeks of either Water (n = 6) or fluoxetine (FLX; n = 7; 333 mg/ml). At the end of the fluoxetine
exposure period, rats were tested in the elevated plus maze (EPM). Rats were then fear conditioned with 2 tone-shock pairings and tested for STM
(2 hr later) and LTM (24 hr later). (B) Mean (6SEM) time spent exploring the open and closed arms of the EPM in each group. (C) Mean (6SEM) post-
shock freezing scores in each group following each conditioning trial. (D) Mean (6SEM) STM scores across each trial in each group. (E) Mean (6SEM)
LTM scores across each trial in each group.
doi:10.1371/journal.pone.0091530.g004
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memory-related IEG expression in the LA, but also the CORT-

related enhancement in fear memory consolidation.

Discussion

The effects of chronic stress and oral CORT administration

have been widely studied at the behavioral, morphological and

molecular levels, particularly in the hippocampus [9,10,12,13,17–

20,23–26,31]. More recent work has focused on examining the

effects of chronic behavioral stress in the amygdala, where long-

lasting alterations in anxiety-like behavior and in the morphology

of LA neurons have been observed [13,21,27–30]. While exposure

to chronic stress or oral CORT have each been shown to enhance

amygdala-dependent fear memory shortly after the stress/CORT

period [31,32], few studies have to date examined the long-lasting

effects of a history of chronic stress or oral CORT on plasticity-

related signaling pathways in the LA and amygdala-dependent

memory processes. In the present study, we examined the long-

lasting molecular and behavioral consequences of prior chronic

oral CORT exposure, a pharmacological model of chronic stress

with construct, face and predictive validity [17–20]. We found that

a history of chronic oral CORT exposure leads to a persistent

elevation in the expression of memory-related IEGs in the LA and

to enhanced consolidation of an amygdala-dependent Pavlovian

fear memory. Further, we show that each of these effects can be

reversed by treatment with the SSRI fluoxetine.

In the hippocampus, the effects of chronic stress and oral

CORT exposure have consistently been observed to promote

dendritic atrophy [9–13] and a downregulation of memory-related

signaling pathways and genes, including that of phosphorylated

ERK, phosphorylated CREB and BDNF [17–21]. Consistent with

these findings, we show that a 2-week exposure to oral CORT

produces a downregulation in the expression of BDNF and the

synaptically-localized proteins GluR1 and synaptophysin in

hippocampal area CA3. Interestingly, while stress-induced mor-

phological changes in the hippocampus have largely been

observed to be transient [27,31], the molecular changes have

been observed to persist after a recovery period in some [17–20],

but not all [21], studies. In our own experiments, we observed that

the CORT-related downregulation in the expression of GluR1,

synaptophysin, and BDNF in hippocampal area CA3 was

transient. In the amygdala, we observed that chronic exposure

to oral CORT promotes an upregulation of phosphorylated ERK,

acetylated histone H3, and the expression of the IEGs Arc/Arg3.1,

Egr-1 and BDNF in LA neurons. Consistent with previous work

that has observed long-lasting dendritic hypertrophy in the LA

following chronic behavioral stress [13,27–29], these molecular

changes were paralleled by an increase in the expression of the

synaptically-localized proteins GluR1 and synaptophysin in the

LA that persisted following the recovery period. Remarkably,

while the CORT-induced enhancement in the expression of

phospho-ERK and acetyl-H3 was observed to return to baseline

levels following recovery from CORT exposure, the enhanced

expression of the memory-related IEGs Arc/Arg3.1 and Egr-1 was

observed to persist.

At the behavioral level, we observed that the consolidation of

auditory Pavlovian fear conditioning was also enhanced by prior

chronic oral CORT exposure; LTM was enhanced, whereas post-

shock freezing and STM were unaffected. The finding that post-

shock freezing and STM were unaffected makes it unlikely that

our behavioral effects were due to altered tone or shock processing

at the time of fear acquisition. Further, consistent with previous

observations [18,44], we observed no significant effect of prior

chronic CORT exposure on unlearned fear/anxiety-like behavior.

Collectively, our findings suggest that chronic oral CORT

exposure can regulate the expression of memory-related IEGs in

the LA in a long-lasting manner and promote enhanced

consolidation of a Pavlovian fear memory acquired long after

the CORT exposure period has ended. Notably, a related study

using the same oral CORT exposure protocol found no significant

effects on fear memory consolidation using a contextual fear

conditioning paradigm [44]. However, contextual fear condition-

ing depends on both the amygdala and the hippocampus [45–47].

Thus, it is likely that enhanced and impaired consolidation

processes at the level of the amygdala and hippocampus,

respectively, driven by potentially opposing molecular alterations,

may mask CORT-induced alterations in contextual fear memory

consolidation [44]. In the present study, the use of an auditory fear

conditioning paradigm may have allowed us to selectively observe

a CORT-induced enhancement of amygdala-dependent fear

memory consolidation.

What is the mechanism by which oral CORT persistently

upregulates the expression of memory-related IEGs in the LA?

One attractive hypothesis is that chronic CORT exposure

promotes epigenetic alterations on memory-related genes in LA

neurons, which result in long-lasting changes in the manner in

which these genes are expressed. Epigenetic modifications,

including alterations in chromatin structure and DNA methyla-

tion, have been widely implicated in memory and cognition and in

brain regions associated with drug addiction and chronic stress,

where they produce persistent alterations in gene expression that

promote long-lasting behavioral phenotypes [48–51]. Chronic

social defeat stress, for example, has been shown to promote

significant increases in histone H3-K27 dimethylation, a repressive

histone modification, on the promoters of BDNF transcripts III

and IV [52]. In the nucleus accumbens (NAcc), chronic social

defeat has been shown to significantly decrease the expression of

histone deacetylase (HDAC) subtype 5, and mice that lack

HDAC5 have been observed to exhibit enhanced depressive and

anxiety-like behaviors [53]. Further, exposure to chronic social

stress has been observed to lead to an increase in DNA

methyltransferase (DNMT) subtype 3A mRNA expression in the

NAcc, and virally-mediated overexpression DNMT3A in the

NAcc has been shown to promote pro-depressive and anxiety-like

behaviors [54]. These observations suggest that chronic stress can

modify the chromatin structure and methylation patterns of genes

in a regionally specific and persistent manner, which may in turn

promote long-lasting behavioral phenotypes. Future studies will be

required to examine epigenetic modifications in memory-related

genes in the LA, including Arc/Arg3.1 and Egr-1, following

chronic oral CORT exposure.

In our experiments, we observed that chronic treatment with

the SSRI fluoxetine reversed both the persistent elevation in

memory-related IEG expression in the LA and the enhanced

consolidation of a fear memory in CORT-exposed rats. Fluoxetine

is one of the most widely prescribed SSRIs for the treatment of a

range of anxiety disorders, including PTSD [55-57], and

accumulating evidence from animal models has suggested that

treatment with SSRIs may be a useful therapeutic tool for the

treatment of persistent and reoccurring traumatic memories [58–

60]. In our experiments, we observed no effect of FLX alone (at

this dose and route of administration) on memory-related gene

expression in the LA and on fear memory acquisition or

consolidation; FLX was only observed to reverse the enhancement

of memory-related IEG expression in the LA and fear memory

consolidation in rats exposed to chronic CORT. Notably, we

observed no effect of FLX on the persistent CORT-induced

increases in the synaptically-localized proteins GluR1 and
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synaptophysin in the LA. This finding is relevant in light of work

suggesting that treatment with the atypical antidepressant (ADT)

tianeptine during a period of chronic stress can prevent the stress-

induced morphological changes in both hippocampal area CA3

and the LA [31,61], while having no effect on the stress-induced

enhancement of fear conditioning [31]. Together with our

findings, these observations suggest that persistent morphological

changes in the LA that are induced by chronic stress or oral

CORT may not be casually related to enhanced memory

formation and/or consolidation.

The mechanism by which FLX reverses CORT-related

enhancements in fear memory consolidation and memory-related

gene expression in the LA remains unknown, but may be related

to the targeting of epigenetic processes in the LA. For example,

chronic treatment with the ADT imipramine significantly

decreases the expression of HDAC5 mRNA in the hippocampus

and promotes a hyperacetylation of histone H3 on the promoter

region of BDNF transcripts III and IV [52], providing a potential

pro-transcriptional mechanism by which to counter the persistent

dimethylation of histone H3-K27 on these BDNF transcripts. In

contrast, chronic treatment with imipramine has been shown to

lead to increased expression of HDAC5 in the NAcc [53]. These

observations suggest that ADTs can promote epigenetic alterations

on plasticity-related genes that compensate for the stress-related

alterations in chromatin structure and DNA methylation. Future

experiments will be necessary to examine the role of epigenetic

mechanisms in the effects of FLX in the LA.

In summary, the findings of the present study suggest that a

history of chronic stress, as modeled by a chronic oral exposure to

CORT, can enhance fear memory consolidation processes

and regulate memory-related IEG gene expression in the LA in

a long-lasting manner, and that treatment with the SSRI

fluoxetine can reverse these effects. The chronic oral CORT

paradigm represents a useful animal model for investigation of

amygdalar-regulated stress mechanisms that should help us to

better understand the development of anxiety disorders such as

PTSD that are characterized by unusually strong and persistent

fear memories.
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